Preliminary communication

SYNTHESIS AND X-KAY STRUCTURE OF THE ANION TETRA- μ-HYDRIDO-DECACARBONYL-triangulo-TRIRHENATE(1-)

G. CIANI*, G. D'ALFONSO, M. FRENI, P. ROMITI, A. SIRONI
Centro di Studio per la Sintesi e la Struttura dei Composti dei Metalli di Transizione nei Bassi Stati di Ossidazione del C.N.R., Istituto di Chimica Generale, Via Venezian 21, 20133 Milano (Italy)

and A. ALBINATI
Istituto di Chimica delle Macromolecole del C.N.R., Via Corti 12, 20133 Milano (Italy)
(Received June 13th, 1977)

Summary

The novel hydridocarbonyl cluster compound $\left(\mathrm{NEt}_{4}\right)\left[\mathrm{H}_{4} \mathrm{Re}_{3}(\mathrm{CO})_{10}\right]$ has been characterized by IR, NMR and X-ray analyses. In the anion the three metal atoms form an isosceles triangle, with two long hydrogen-bridged $\mathrm{Re}-\mathrm{Re}$ bonds and a short doubly hydrogen-bridged $\mathrm{Re}=\mathrm{Re}$ double bond.

[^0]with cell constants $a 13.09(1), \varepsilon^{2} 11.83(1), c 34.29(2) A, Z=8$. The structure was solved by Patterson and Fourier methods and refined by block-matrix leastsquares to a conventional R value of 0.085 for 753 independent observed reflections. The Re-C-O interactionswere constrained to linearity and the $\mathrm{C}-\mathrm{O}$ distances were kept constant, with a yalue of 1.18 A.

The structure of $\left[\mathrm{H}_{4} \mathrm{Re}_{3}(\mathrm{CO})_{10}\right]^{-}$is illustrated in Fig. 1 and the bond param-

Fig 1. Two vie: $:$ s of the anion $\left[\mathrm{H}_{4} \mathrm{Re}_{3}(\mathrm{CO})_{10}\right]^{-}$with postutated hydridic atoms locations.
eters are listed in Table 1. The anion contains an isosceles metal atoms triangle and exhibits an overall idealized $C_{2 v}$ symmetry. It is unsaturated (46 valence electrons, as in the parent species I) and, consequently, it requires the presence of a metal-metal double bond, which is localized on the $\operatorname{Re}(2)-\operatorname{Re}(3)$ interaction.

The positions of the four hydrido ligands (not directly located) can be easily

TABLE 1
BOND DISTANCES (\AA) AND ANGLES (deg) WITHIN THE ANION $\left[\mathrm{H}_{4} \mathrm{Re}_{3}\left(\mathrm{CO}_{10}\right]^{-}\right.$

$\operatorname{Re}(1)-\operatorname{Re}(2) \quad 3.173(7)$		$\mathrm{C}(12)-\operatorname{Re}(1)-\mathrm{C}(14)$	94(2)
$\begin{array}{ll}\operatorname{Re}(1)-\operatorname{Re}(2) & 3.173(7) \\ \operatorname{Re}(1)-\operatorname{Re}(3) & \mathbf{3 . 1 9 4 (7)}\end{array}$		$\mathrm{C}(13)-\mathrm{Re}(1)-\mathrm{C}(14)$	172(2)
Re(2)-Re(3) 2.82	$2.821(7)$	$\operatorname{Re}(1)-\operatorname{Re}(2)-C(21)$	160(2)
$\operatorname{Re}(1)-C^{c} \quad 1.94$	1.94 (4)	Re(1)-Re(2)-C(22)	100(2)
$\operatorname{Re}(2.3)-\mathrm{C}^{\text {a }} 1.90$	1.90(4)	$\begin{aligned} & \operatorname{Re}(1)-\operatorname{Re}(2)-C(23) \\ & \operatorname{Re}(3)-\operatorname{Re}(2)-C(21) \end{aligned}$	$\begin{array}{r} 106(2) \\ 96(2) \end{array}$
$\operatorname{Re}(2)-\operatorname{Re}(1)-\operatorname{Re}(3)$	52.6(2)	$\mathrm{Re}(3)-\mathrm{Re}(2)-\mathrm{C}(22)$	132(2)
$\operatorname{Re}(1)-\operatorname{Re}(2)-\operatorname{Re}(3)$	64.1(2)	Re(3)-Re(2)-C(23).	$141(2)$ 95
$\operatorname{Re}(1)-\operatorname{Re}(3)-\operatorname{Re}(2)$	$63.3(2)$	$\begin{aligned} & C(21)-\operatorname{Re}(2)-C(22) \\ & C(21-R e(2)-C(23) \end{aligned}$	$95(2)$ $88(2)$
$\operatorname{Re}(\underline{2})-\mathrm{Re}(1)-\mathrm{C}(11)$	108(1)	C(22)-Re(2)-C(23)	86 (3)
$\operatorname{Re} 2)-\operatorname{Re}(1)-\mathrm{C}(12)$ $\operatorname{Re}(2)-\operatorname{Re}(1)-\mathrm{C}(13)$	$157(1)$ $82(1)$	Re(1)-Re(3)-C(31)	160(1)
$\operatorname{Re}(2)-\operatorname{Re}(1)-\mathrm{C}(13)$ $\operatorname{Re}(2)-\operatorname{Re}(1)-C(14)$	$82(1)$ $90(1)$	Re(1)-Re(3)-C(32)	103(1)
Re(3)-Re(1)-C(11)	160(1)	Re(1)-Re(3)-C(33)	103(2)
Re(3)-Re(1)-C(12)	105(1)	$\operatorname{Re}(2)-\operatorname{Re}(3)-\mathrm{C}(33)$ $\operatorname{Re}(2)-\operatorname{Re}(3)-\mathrm{C}(32)$	138(1)
$\mathrm{Re}(3)-\mathrm{Re}(1)-\mathrm{C}(13)$	85(1)	$\operatorname{Re}(2)-\operatorname{Re}(3)-\mathrm{C}(33)$	$136(2)$
Re(3)-Re(1)-C(14)	90(1)	C(31)-Re(3)-C(32)	87(2)
$C(11)-\operatorname{Re}(1)-\mathrm{C}(12)$ $C(11)-\operatorname{Re}(1)-C(13)$	$95(2)$ $94(2)$	C(31)-Re(3)-C(33)	94(2)
$\mathrm{C}(11)-\operatorname{Re}(1)-\mathrm{C}(14)$	89(2)	C(32)-Re(3)-C(33)	88(2)
C(12)-Re(1)-C(13)	93(2)		

[^1]derived from the cluster geometry and from the carbonyl arrangement. Two of them, $\mathrm{H}(1)$ and $\mathrm{H}(2)$; are bridging the rhenium-rhenium double bond, and the other two, $\mathrm{H}(3)$ and $\mathrm{H}(4)$, are bridging the two long triangular edges, whose lengths are comparable to those found in other hydrogen-bridged Re-Re single bonds [2].

Neglecting the intermetallic bonds, the coordination around each rhenium atom is approximately octahedral. The net anionic charge must be equally shared by the $\operatorname{Re}(2)$ and $\operatorname{Re}(3)$ atoms.

This structure is very similar in the $(\mathrm{CO})_{3} \mathrm{Re}_{\mathrm{H}}^{\mathrm{H}} \mathrm{Re}(\mathrm{CO})_{3}$ fragment, to that of I (in which the remaining part of the dianion was somewhat obscured by disorder [1]). The corresponding $\mathrm{Re}-\mathrm{Re}-\mathrm{C}(c i s), \mathrm{Re}-\mathrm{Re}-\mathrm{C}$ and $\mathrm{C}-\mathrm{Re}-\mathrm{C}$ angles have mean values of $101^{\circ}, 134^{\circ}$ and 90° in I vs. $97^{\circ}, 136^{\circ}$ and 90° in the present case.

The bis $(\mu-\mathrm{H})$ rhenium-rhenium double bond (2.821(7) \AA, very close to the value of $2.797(4) \AA$ found in I) is ca. $0.2 \AA$ shorter than an unbridged $\mathrm{Re}-\mathrm{Re}$ single bond, e.g. $3.02 \AA$ in $\operatorname{Re}_{2}(\mathrm{CO})_{10}$ [3]. Similar $\mathrm{M} \xlongequal[{ }_{{ }_{\mathrm{H}}}{ }^{\mathrm{H}}]{=} \mathrm{M}$ bonds are present also in the species $\mathrm{H}_{2} \mathrm{Re}_{2}(\mathrm{CO})_{s}$ [4], $\mathrm{H}_{2} \mathrm{Os}_{3}(\mathrm{CO})_{10}$ [5] and $\left[\mathrm{H}_{2} \mathrm{~W}_{2}(\mathrm{CO})_{8}\right]^{2-}$ [6]. The expected bond lengthening effect of the bridging hydrides cannot be demonstrated since there are no data on corresponding $\mathrm{M}=\mathrm{M}$ unbridged double bonds in carbonylic species. Various trinuclear halide clusters of rhenium are known, with metal-metal distances of $2.43-2.51 \AA$, in which the bond order is believed to be 2 [7]; however, the different natures of halide and carbonyl ligands prevents any direct comparison.

The results confirm our suggestion about the location of the hydridic atoms in I, and the assignments of their NMR signals. The two equivalent hydrides bridging the metal-metal double bond give very similar signals in the two anions ($\tau 18.5$ vs. 18.4 in I). The other two equivalent hydrides, $\mathrm{H}(3)$ and $\mathrm{H}(4)$, give a signal at somewhat higher field than that of the third hydride of I ($\tau 23.4 \mathrm{vs} .21 .1$). All these signals, as already pointed out [1], are at rather low values for bridging hydrides, because of unsaturation.

We thank the Italian C.N.R. for financial support.

References

1 A. Bertolucci, M. Freni, P. Romiti, G. Ciani, A. Sironi and V.G. Albano, J. Organometal. Chem. 113 (1976) C61.
2 H.D. Kaess, Chem. Brit., 9 (1973) 344, and refs therein.
3 L.F. Dahl, E. Ishishi and R.E. Rundle, J. Chem. Phys., 26 (1957) 1750.
4 M.J. Bennett, W.A.G. Graham, J.K. Hoyano and W.I. Hutckecn, J. Amer. Chem. Soc., 9』 (1972) 6232.
5 F. Mason, XXIII IUPAC Congress, 6 (1971) 31, quoted in re£. 2.
6 M.R. Churchill and S.W.Y. Cnang, Inorg. Chem., 13 (1974) 2413.
7 See e.e F.A. Cotton and T.E. Haas, Inore. Chem., 3 (1964) io.

[^0]: We have recently reported [1] the synthesis and structure of the unsaturated red dianion $\left[\mathrm{H}_{3} \mathrm{Re}_{3}(\mathrm{CO})_{10}\right]^{2-}(\mathrm{I})$, and we have now begun to study its reactions with acids and bases. When a solution of its tetraethylammonium salt in acetone is treated with a strong acid such as HCl or HClO_{4} at room temperature, and water is subsequently added, a yellow precipitate is obtained in good yield. The analysis of the product corresponds to the new species $\left(\mathrm{NEt}_{4}\right)\left[\mathrm{H}_{4} \mathrm{Re}_{3}(\mathrm{CO})_{10}\right]$. The IR spectrum (in acetone) shows bands due to terminal carbonyl ligands at $2090 \mathrm{w}, 2025 \mathrm{~m}, 1998 \mathrm{vs}, 1948 \mathrm{~m}$ and $1915 \mathrm{~s} \mathrm{~cm}^{-1}$. The NMR spectrum (in $\mathrm{CD}_{3} \mathrm{COCD}_{3}$) at high field exhibits two singlets, at $\tau 18.5$ and 23.4 ppm , in the ratio $1: 1$, whose integration with respect to the cationic methylene hydrogens is in good agreement with the proposed stoicheiometry. Reaction 1 seems not to

 $$
 \begin{equation*}
 \left[\mathrm{H}_{3} \operatorname{Re}_{3}(\mathrm{CO})_{10}\right]^{2-}+\mathrm{H}^{+} \rightarrow\left[\mathrm{H}_{4} \operatorname{Re}_{3}(\mathrm{CO})_{10}\right]^{-} \tag{1}
 \end{equation*}
 $$

 ive reversed on treatment of the product with a strong base, probably for reasons similar to those outlined by Kaesz [2] for the case of the two species $\left[\mathrm{HRe}_{3}(\mathrm{CO})_{12}\right]^{2}$ and $\left[\mathrm{H}_{2} \mathrm{Re}_{3}(\mathrm{CO})_{12}\right]^{-}$.

 Recrystallization of the yellow precipitate from acetone/water or ethanol/ water gives different crystallographic modifications of the same substance. We have investigated by X-ray diffraction an orthorhombic form, space group Pbcn ,

[^1]: a Mean value.

